Prevalence of Hypertension and its Associated Risk Factors among Secondary School Teachers of Belagavi City

A gre Deepchand Hirachand
Master of Public Health, Department of Public Health, KLEU, J.N. Medical college, Belagavi, Karnataka 590010
K atti S. M .
Professor and Head, Department of community medicine, KLEU, J.N. Medical College, Belagavi, Karnataka 590010
Mubashir Angolkar
Associate Professor and Head, Department of Public Health, KLEU, J.N. Medical College, Belagavi, Karnataka 590010

M allapur M. D.

Assistant Professor in Statistics, Department of community medicine, KLEU, J.N. Medical College, Belagavi, Karnataka 590010

Abstract

Background: Hypertension is an important risk factor for CVD and amajor public health problem in developing countries around the world. All over the world among all annual deaths, 12.8% deaths are due to hypertension which is about 7.5 million deaths, which accounts 57 million disability-adjusted lifeyears (DALY'S). 0 bjectives: (a) To estimatetheprevalence of hypertension among secondary school teachers of Belagavi city. (b) To know theassociated risk factors influencing hypertension. M aterial and M ethod: A cross sectional study was conducted from Feb 2014to Oct 2014in Belagavi city among 400 secondary school teachers. Pretested questionnairewas used to collect information about demographic and socio-economic factors. Anthropometric measurements weretaken for assessment of risk factors of hypertension. An anal ysis of data was done by using SPSS software version 20 and percentage for prevalence and chi-square to find out association. Result: Prevalence of hypertension among secondary school teachers was 13.25% (14.1% in males and 13.0% in female). Hypertension increases as age advances in both males and females. Hypertension was associated with age, marital status and body mass index. Conclusion: Theprevalence of hypertension among secondary school teachers was high. Sex, marital status and body mass index weresignificantly associated with hypertension.

Keyw ords: Hypertension; School Teachers; Blood Pressure; BMI; Socio-Economic Status.

Introduction

Non-communicable diseases especially cardiovascular diseases are on risein developing countries like India due to epidemiological, nutritional, demographic, and socio-economic and life style transition, other factors like gene-environmental

Corresponding Author: A gre Deepchand Hirachand, Department of Public Health, J.N. Medical College, KLE University, JNMC Campus, Nehru Nagar, Belagavi, Karnataka 590010

E-mail: deepchand.agre19@gmail.com
interactions and early lifeinfluences of foetal undernutrition arelikely to causeincreased burden of CVD in India [1].
Asper theWorld Health Organization Statistics 2013, globally cardiovascular disease accounts for approximately 17 million deaths a year. The complications of hypertension accounts for 9.4 million deaths worldwide annually. Hypertension is responsiblefor about 45.0\% of deathsdueto heartdisease and 51.0% of deaths dueto cardiac stroke Theprevalence of hypertension is highest in the A frican region among adults aged 25 and above at 46.0%, while the lowest prevalenceat 35.0% isfound in theAmericans[2].

All over the world among all annual deaths, 12.8\% deaths are due to hypertension which is about 7.5
million deaths, which accounts 57 million disabilityadjusted life year (DALY'S). Globally the overall prevalence of hypertension in adults aged 25yrs and abovewas 40.0% in 2008 [3].

Hypertension being important risk factor for CVD and a major public health problem in developing countries around the world [4]. A ccording to WHO, Hypertension is third 'killer' disease, accounting for one in every eight deaths worldwide. It's been expected that number of hypertensives may risefrom 118 million in 2000 to 214 million in 2025. Though being major public health concern hypertension is a modifiablerisk factor for CVD [1].

Hypertension exhibits iceberg phenomenon where unknown morbidity exceeds known morbidity [4]. Prevalenceof hypertension in India, for lastthreedecades has increased about 30 times among urban population overaperiod of $55 y$ ys sand 10 timesamongrural population over aperiod of 36 yrs. Prevalenceof hypertensionvaried around theworld with thelowest prevalencein rural India 3.4\%in males and 6.8\%infemales[5].

In 2010, the overall prevalence of hypertension in Karnataka was 32.1\%. Lifestylefactors likesmoking was present in 12.6% participants; alcohol intakewas present in 13.0\%. Among vegetarian and nonvegetarian diet groups, prevalenceof hypertension was reported as 35.5% and 64.5% subject's respectively [6].

Several risk factorsareresponsiblefor hypertension which is modifiable and non-modifiable factors. Modifiablefactors are smoking, obesity, salt intake, saturated fat, alcohol, physical activity, socioeconomic status and non-modifiablefactors are age, sex and genetic factors[7].

Teachersarean assetto any country, however dueto sedentary lifestyle dietary intakeand lack of knowledge on coronary heart diseases, thereisa high prevalenceof risk factor among them. Henceweproposed to carry out our study on this particular section of our society.

Objectives

1. To estimatetheprevalenceof hypertension among secondary school teachers of Belagavi city.
2. To know the associated risk factors influencing hypertension.

M aterials and M ethods

A cross sectional study was conducted from February to October 2014in Belagavi city among 400
secondary school teachers. The sample size was cal culated by using formula $n=4 p q / d^{2}$ and sample size was calculated as 400 . Systematic random sampling was used to select the school teachers. Pre-tested questionnaire was used to collect information about demographic and socioeconomic factors, family history, lifestyle factors and also risk factors for hypertension. Anthropometric measurements and blood pressure weretaken, which were required for assessment of risk factors for hypertension. This includes measurement of height, weight, waist and hip circumference. Before starting data collection all instruments had been calibrated daily. Teachers who wereon long leavewereexcluded in this study and school teachers between the age group of 2059 years were included in this study. Data were coded and entered into SPSS sheet and analyzed by using SPSS software (SPSS 20.0 Version). Percentagewas cal culated wherever required from frequency tables. Chi- square test was used to see the statistical significance of different study variables. Ethical clearance from institutional ethics committee of J.N.M.C, KLES was obtained. Informed consent was taken from all partici pants beforedata collection.

Results

Total 400 secondary school teachers wereincluded in the study. A mong them 322 (80.5\%) werefemales and 78 (19.5\%) were males. 70.25% were Graduate, 56.0\% did not carry out physical activity, 48.5\% had abdominal obesity, 46.75\%belonged to class I followed by 38.50% bel onged to class II, according to M odified B. G. Prasad classification of socio-economic status. Theprevalence of hypertension among school teachers was 13.25% (males 14.1% and female 13.0%). Prevalence of hypertension increases as ageadvances in both males and females and highest subjects i.e. 21 (16.7\%) were in theagegroup of $40-49$ years followed by 20 (30.3\%) in theagegroup of $50-59$ years (Table1).
Table 2 shows that among married teachers, 42 (13.6\%) were hypertensives. Among unmarried teachers, $7(8.3 \%)$ were having hypertension. The difference was statistically significant. Prevalence of hypertension increases with increase in weight and the prevalence of hypertension was high among overweight and obeseteachers (Table3).

Table 1: Association between hypertension and age

Age (In years)	Hypertension		
	YES	NO	Total
$20-29$	1	78	79
$30-39$	11	118	129
$40-49$	21	105	126
$50-59$	20	46	66
Total		53	347
$X^{2}=30.352$	df $=3$	$\mathrm{p}=0.001$	

Table 2: Association between hypertension and marital status

Marital status	Hypertension		Total
	YES	NO	
Married	42	267	309
Unmarried	7	77	84
Divorced	3	3	6
Widow	1	0	1
Total	53	347	400

Fisher exact $p=0.005$
Table 3: Association between hypertension and BMI

BMI	Hypertension		Total
	YES	NO	176
Underweight and Normal	8	168	
weight			163
Overweight	19	137	61
Obese	53	42	400
Total			

$X^{2}=29.642 \quad d f=2$
[X^{2} for linear trend $=29.329 p=0.001$]

Discussion

Using the latest Joint N ational Committee Report VII for detecting hypertension, in this study among 400 school teachers, the prevalence of hypertension was 13.25%. The prevalence was high when compared to thestudies conducted at Jeddah, Basrah, Nelloreand Bansal wheretheprevalencewere 25.2%, $21.3 \%, 29.3 \%$ and 32.2% respectively [$8,9,10,11$]. In thestudy it i sobserved that prevalence increases with agefrom 16.7% in $40-49$ years to 30.3% in $50-59$ years. Similar study conducted on school teachers in Jeddah, theprevalenceof hypertension in theagegroup of $30-$ 39 years to be 13.7% and increased to 64.0% in the age group of 60-69 years [8]. Significant association between hypertension and marital status was observed in the present study. This finding was similar to thestudy donein Ethopia [12]. In this study it was observed that prevalence of hypertension increases with increase in weight. Thepresent study
showed that the prevalence of hypertension was associated with theBMI. In subjects with underweight and normal weight only 4.5% werehypertensives and 16.0% subjects with overweight werehypertensives, followed by 31.1% of subjects with obese had hypertension. Similar study conducted in Basrah showed that in obese, 29.6% subjects were hypertensives whereas in overweight 22.4% subjects were hypertensives [9]. There was significant association between hypertension and BMI which was similar to thefindings of present study.

Conclusion

In this study, theprevalenceof hypertension among secondary school teachers was high. Majority of teachers having hypertension were aware that they had hypertension. Sex, marital status and body mass index weresignificantly associated with hypertension.

Recommendation

Establishment of screening programs for detecting hypertension among obese, overweight persons. Establish an environment in school which is freefrom smoking and motivate teachers for increasing physical activity and controlling weight are recommended. Training of teachers regarding hypertension and non communicable diseases and their prevention. Strengthening health education programs to promote hypertension awareness and focusing on preventivemeasures.

Acknowledgement

I am thankful to my Guru, Guideand all theschool teachers of Belagavi city who participated in thisstudy.

Conflict of interest: N one declared.

Source of funding: Nil.

Reference

1. Meshram I, Laxmaiah A, MallikharjunRao K, Arlappa N, Balkrishna N, Ch. Gal Redd, Ravindranath M, Sharad Kumar, Brahmam G. Prevalence of Hypertension and Its Correlates among Adult Tribal Population (e"20 Years) of MaharashtraState, India. International Journal of Health Sciences \& Research. 2014; 4(1): 130-39.
2. TheGlobal brief on H ypertension. Silentkiller, global public health crisis. World Health day 2013. A vailable from URL: http:/ / apps.int/ iris/ bitstream/ 10665/ 79059/ $1 /$ WHO_DCO_ WHD_ 2013.2_eng.pdfwho. (A ccessed on $\overline{19-11-2014) . ~}$
3. TheGlobal Burden of Disease. 2004update. World Health Organization 2008. A vailable from URL: http:/ / www.who.int/ healthinfo/ global
burden disease/ GBD report 2013 update full.pdf. (A ccessed on 19-11-2014).
4. World Health Report 2002. Reducing risks, promoting healthy life. A vailable from URL: http:/ / www.who.int/ whr/ 2002/ en/ whr02_ ch4.pdf. (A ccessed on 25-11-2014).
5. Suwarna M, Vaishali G and Sudeepa D. An Epidemiological Study of Hypertension and Its Risk Factors in Rural Population of Bangalore Rural District. AI A meen J Med Sci. 2012; 5(3): 264-70.
6. Kearney PM , Whelton M , Reynolds K, Wheiton PK,HeJ.Worldwideprevalenceof hypertension:A systematicreview. Hypertension. 2004; 22(1): 21-4.
7. CesanaG, Ferrario M, Chidini P, Carro G, M ancia G. JobStrain and blood pressurein employed men and women; A pooled analysis for northern Italian population samples. Psychosomatic M edicine. 2003; 65: 558-563.
8. NahlaK.R, Nariman A, Adnan A. Prevalence and Determinants of Pre-hypertension and Hypertension among Preparatory and Secondary School Teachers in Jeddah. J Egypt Public Health Assoc. 2008; 83(3-4): 184-203.
9. Hanan A, Jasim .N. Prevalence and lifestyle determinants of hypertension among secondary school female teachers in basrah. The medical journal of basrah university. 2009; 27(2): 90-4.
10. PrabakaranJ, Vijayalakshmi N, VenkataRao E. Prevalenceof Hypertension among Urban A dult Population ($25-64$ years) of Nellore, India. Int J Res Dev Health. 2013; 1(2): 42-9.
11. Yadav S, Boddula R, Genitta G, Bhatia V, Bansal B, etal. Prevalence\& risk factors of prehypertension \& hypertension in an affluent north Indian population. IndianJ Med Res. 2008; 128: 712-720.
12. Sisay B, A ndualem M,TeshomeG. Prevalenceof Hypertension and Its A ssociation with Substance Useamong A dults Living in Jimma Town, South West Ethiopia, 2012. World Journal of Medicine and Medical Science. 2014; 2(1): 01-11.
